
Tech Feasibility
March 22nd, 2024

The Lunar Pit Patrol:

Evan Palmisano, Ibraham Hmood, Alden Smith, Caden Tedeschi, Levi

Watlington

Project Sponsor: Trent Hare

Faculty Mentor: Vahid Nikoonejad Fard

2

Introduction 3
Tech Challenges 4
Technology Analysis 5

Desired Characteristics 5
Alternatives 6
Analysis 7
Chosen Approach 8
Proving Feasibility 9

Technology Integration 10
Conclusion 10

3

Introduction
Commercialized celestial landings are becoming increasingly

prevalent in modern-day society as the race to colonize the Moon and Mars

is growing rapidly. The main feature of these missions at the moment is

autonomous, unmanned landings executed by specialized vehicles. These

vehicles need to land appropriately to the mission plan as enormous

amounts of funding are directed towards these missions. The problem is

that there is a lot of unpredictability when it comes to these landings and it

is necessary to possess as much information about the landing surface as

possible.

The current solution is the usage of crater statistics within

astrogeology to map celestial surfaces and find ideal landing locations for

these missions. Our sponsor, Trent Hare along with his associate Marc

Hunter use a command line application developed in Python to interpret

and assess given data files. The main problem our sponsor is facing is the

fact that the current application operates through command-line interaction.

This can pose a problem as the data output is not easily interpreted. As for

astrogeologists, not everyone knows how to operate within the command

line terminal which introduces a problem of usability.

The Lunar Pit Patrol’s job is to modify the current application and

develop a graphic user interface (GUI) so the application can operate on its

own instead of the command line interface. This will improve readability

and data assessment for astrogeologists which will promote success in

their work. Some key features of the project include a standalone window

for containing the application, a toolbar to access functions and modify

statistics, an area for displaying plots of the relevant statistics, and

4

immediate options for more common modifications of data and functions.

These additional features and improvements to the application will ensure

consistency, improve assessment times, and introduce ease of use.

Tech Challenges
There are a few challenges in our project that we have encountered

and we are working on figuring out how we can solve them if we haven’t

already. One of the first major challenges we thought of is how we must

connect the GUI CraterStats application to the command line application so

that the GUI can send commands to the CLI and get the data it needs back

from it. After searching through libraries we found the Popen and PIPE

functions in the subprocess library which allow us to make a subprocess in

our Tkinter GUI that can take text and pipe them to the CLI to run them as

commands and then pipe the data the command gave back to the GUI to

be displayed to the user. A separate solution to connecting these two

applications is to build upon the existing application through a fork and strip

the command line with buttons and switches.

Another major challenge is we will need to connect an entire Python

application to be run within a web environment. We are researching if AWS

Lambda Functions could potentially be our solution to run a Python

backend with a web frontend. We will need the front end to closely mimic

the likeness of the Python GUI application to maintain consistency in

usage. Forking the current CLI application will maintain the old application

to be better used with AWS Lambda Functions.

A lesser challenge would be how we need to best display the data

given back from Crater Stats. There are several libraries that we can use

when we enter this challenge such as py_graph or EasyGraph. However,

5

the goal is to clearly display important data in such a way that is easily

readable to the user. Being able to export or objectify these graphs will

assist in displaying them on our later web application as well.

Technology Analysis
For this project to be successful, our goal is to simplify the use of

craterstats while keeping the overall program the same. At the moment the

craterstats program is only run out of the command line using a long and

complicated argument system. This new GUI will need to perform the exact

same functions as the command line system but in a way that is easy for

users to understand. While keeping this same program it is important to

highlight a few things from the command line system. When the user

selects all the options for the graph they would like, a command line like

statement should be shown that displays how the command would look

when run on the command line. The program should also display the graph

to be exported after the commands are run.

Desired Characteristics
Our ideal solution for this project is to have a user-friendly interface

that is easy to use while also being easy to maintain after updates to the

program. Having a user-friendly interface will allow access to anyone who

would like to use the program. Having discernable commands that appear

when needed will help keep the interface clutter free and easy to read and

understand. Having an easily readable interface will allow for use of the

program commands without needing to know the actual command line

arguments needed and the order they are needed in. To help the ease of

updating the GUI will need to be easily maintained. This will allow for easy

6

updates to the GUI if there are updates to the program that change how it

is used. The program will also need to be able to be used across platforms

on Linux, Mac, and PC.

Alternatives
There are a lot of ways to fix this issue. Given that there are a lot of

tools to choose from to be able to create a GUI there are quite a few

options for a fix.

● Unity: Brought up because it is used by a few people in the group.

Unity’s editor allows for fast UI creation with ability to easily grab and

edit different parts of the interface. Originally founded in 2004 by

David Helgason, Nicholas Francis, and Joachim Ante, Unity was

originally created as a Mac OS X game engine. However through the

years it has grown to be used for many different uses including game

development for multiple platforms, animation, and 3D modeling. [3]

● Windows Forms: This application was made known through research

and previous use. Released in 2002 by the .NET foundation,

Windows Forms (WinForms) was released as an early and easy way

for developers to create graphical interfaces. Each major update after

the initial release came with the newer .NET Framework versions,

each making Windows Forms easier and faster to use. [4]

● TKinter: A library in python that was brought up by team members

and a suggestion by our sponsor, was released as a GUI extension

for the Tcl scripting language by John Ousterhout. Not only a library in

python but also other extensions in Perl, Ada (Known as TASH),

Ruby, and Common Lisp due to its popularity. Tkinter allows for easy

creation of graphical user interfaces with widgets for nearly all

7

necessary functions for an interface. [1]

● DearPyGUI: Brought to our attention by our sponsor, the full version

initially released in 2021 by Jonathon Hoffstadt. DearPyGUI is a

python library that is used to create graphical user interfaces that also

has tools for dynamic charts, tables, and drawings as well as tools for

application development. [2]

● ReactJS: Suggested by our sponsor to have a web version of the

program, the team looked into ReactJS for its small learning curve,

and ease of use. Released in 2013 and developed by Meta, ReactJS

(React) is a library of JavaScript that allows for better dynamically

created user interface elements in a webpage.

● ThreeJS: Used previously by a team member, ThreeJS is a library of

JavaScript that was released in 2010 by Ricardo Cabello. This library

allows for in depth 3-Dimensional designs and animations to be used

on a webpage using WebGL.

Analysis
When testing the above applications and libraries it became clear

quickly which ones would be best for further pursuit. Windows Forms was

immediately disconsidered because it is not cross platform compatible

between Linux and Mac, as well as being harder to maintain. Unity, while

being cross platform compatible, had too much overhead in the creation

process with lots of additional dependencies required to create a build of

the interface. It would also be nearly unmaintainable within our industry due

to the excessive overhead requirements. TKinter and DearPyGUI are both

already in python, so it is easier to expand upon the already existing

craterstats program that is in python. TKinter was tested by creating simple

8

programs to see how the library works. TKinter allows for easy placement

of different functions and widgets with easy accessibility to each of the

widgets, with access to creating different pages and sections of each page.

This lets us as the designers make a user-friendly interface while keeping

the overall program very manageable and maintainable for future updates.

DearPyGUI is nearly identical to TKinter only with newer features and more

capabilities. DearPyGUI being a python library gives the same easy

expansion of the existing command line program as TKinter does. Installing

and running DearPyGUI and Tkinter is as easy as doing a quick pip install

and importing the library into a python application. ReactJS and ThreeJs

are very popular and easy to learn libraries within JavaScript. Using these

libraries to create a website edition of the graphical user interface, will

create easier and faster accessibility for those that want to use the

program. While creating simple programs and looking into different projects

created with these two libraries showed just how effective they can be at

creating a user-friendly experience.

Chosen Approach
Our chosen approach is to continue with the project within the TKinter

library and ReactJS. While Windows Forms and Unity would have been

easier to use and create an interface, they had too many problems with

trying to get the craterstats program linked in with at as well as too much

overhead for creation. DearPyGUI is another option if TKinter doesn’t work

out, but it was introduced to us a bit later so there hasn’t been much

research or testing with it. ReactJS was also chosen because our sponsor

wants both a standalone program as well as a website.

9

User
Friendly

Ease of
Maintenance

Cross Platform
Compatibility

Total

Unity/ 4/5 1/5 5/5 10/15

Windows
Forms

4/5 1/5 0/5 5/15

TKinter 3/5 5/5 5/5 13/15

DearPyGUI 4/5 5/5 5/5 14/15

ReactJS 3/5 4/5 5/5 12/15

ThreeJS 3/5 3/5 5/5 11/15
Table A: Comparison between GUI creating environments

Table A presents each alternative we’ve considered with a ranking

from 0 to 5 out of 5 for how well it performs for the desired characteristics

we have. As seen from the data TKinter and DearPyGUI were obvious

winners, with TKinter only winning in our choice because of our time to

research and get familiar with the library.

Proving Feasibility
For this project to progress fluently and be successful, we must make

sure that what we want with the program using TKinter is possible. To make

sure of this we will be making a small program that exports graphs from

equations that the user will input. This demonstration will give us the skills

required to make sure that the craterstats program runs smoothly through

the interface.

10

Technology Integration
Considering that we know of the challenges we face and how we plan

on solving them, it is important to show how our solutions fit together to

produce a GUI for the CraterStats command line application.

The way our system works is by first taking commands and using

Popen and Pipe from python’s subprocess library. These commands are

then passed to the CraterStats command line application. The output from

the command line application is then fed into a graphing library (such as

py_graph or EasyGraph), which will be used to display said data. After the

data is displayed, the program continues to run. This process is similar to

how the web application will run, as the web application will use the

subprocess library to pass commands to the CraterStats command line

program, and will use a graphing library to display data gathered from the

program before continuing to run. This system will allow users to use the

CraterStats application without knowing how to use a command line

application, as it will provide a GUI for usage.

Conclusion
So, the problem we are currently trying to solve is to develop a

graphical user interface for a command line-based crater statistics

application. This problem is important to solve as, currently, the crater

11

statistics command line application only displays statistical data. Creating a

GUI for plotting that data makes it easier to understand, and makes the tool

easier to use. With our application’s interface, we plan on having a

standalone window for it, a toolbar to provide access to functions and

modify statistics, an area to display plots of relevant statistical data, and

options for modifying data and functions.

Meeting our goal does present some technological challenges. For

one, we need to find a way to connect both the command line application

and our GUI application. One other challenge is running this GUI

application on a web server. We must also find a way to best display our

data. To solve these challenges, we want to use python’s subprocess

library to run the command line application and get its output to be

displayed in a graph. We also want to use a server-less service, such as

AWS Lambda Functions, which would allow us to run our application and

maintain the same interface. Lastly, we want to use some python libraries

(such as py_graph and EasyGraph) to plot statistical data gathered from

the command line app.

For ease-of-use, we want to develop a user-friendly interface. Such

an interface would also be easy to maintain, and would allow anyone to use

the application. Our program must also have cross-platform support. To

develop such an interface, we have several solutions: using Unity, Windows

Forms, TKinter, DearPyGUI, ReactJS, or ThreeJS. One advantage of using

Unity is that it allows for immediate UI creation, and relies on drag and drop

style UI editing. One advantage of using Windows Forms is that it uses the

.NET framework and is easier and faster to use. As for TKinter, it is

available for use in many programming languages, and is also easy to use.

TKinter also uses widgets for GUI creation. For DearPyGUI, it is useful for

12

creating charts, tables, and drawings. An advantage of ReactJS is that it

allows for dynamically creating UI elements. Finally, as for ThreeJS, it is

useful for creating 3D designs and animations on a web page. After

analyzing all of these tools, we came to the conclusion that the best to use

are ReactJS, ThreeJS, DearPyGUI, and TKinter. We excluded Windows

Forms, as it does not have the level of cross-platform support we want. In

the end, we decided to use both TKinter and ReactJS, as the alternatives

have too many problems working with the craterstats program.

Bringing this all together, we want to have our GUI application pass

commands to the command-line application using python’s subprocess

library. After passing the commands and running the application, our

program will get the output and use that to produce a graph. After

displaying the graph, our program will continue running until it is closed.

Now, after all of the research our team has done, we have to move on

to our next steps. Knowing what tools we want to use, we plan on starting

the development of an interface. We also plan on further researching some

of the tools we have chosen to use.

13

Works Cited

[1] B. Klein, "Tkinter - the Python interface for Tk | Tkinter |

python-course.eu," 1 February 2022. [Online]. Available: Python-course.eu.

[Accessed 21 March 2024].

[2] J. Hoffstadt, "Home · hoffstadt/DearPyGui Wiki · GitHub," [Online].

Available: https://github.com/hoffstadt/DearPyGui/wiki. [Accessed 21 March

2024].

[3] D. Takahashi, "Unity (game engine)," [Online]. Available:

https://en.wikipedia.org/wiki/Unity_(game_engine). [Accessed 21 March

2024].

[4] "Windows Forms," [Online]. Available:

https://en.wikipedia.org/wiki/Windows_Forms. [Accessed 21 March 2024].

